

Basic Aspects of Muscle Pain

Introduction

- Musculoskeletal disorders are the leading causes of pain in every population.
- Pain from muscles and pain from the skin are subjectively and objectively distinct.
- Muscle pain is aching and cramping, and cutaneous pain is sharp and pricking. In contrast to cutaneous pain, muscle pain is referred to other deep somatic structures.
- The neuronal pathways of nociceptive information from muscle and skin are different in the central nervous system (CNS).

Morphology and Functional Properties of Muscle Nociceptors

- Muscle nociceptors are free nerve endings that are connected to the CNS by thin myelinated (group III) or unmyelinated (group IV) fibers.
- Nociceptive muscle afferents are not blocked by tetrodotoxin (TTX), which indicates the presence of TTXresistant sodium channels.
- Group III and IV fibers comprise high-threshold mechanosensitive (presumably nociceptive) and lowthreshold mechanosensitive (presumably non-nociceptive) muscle receptors. The latter probably mediate pressure sensations from muscle.
- Dorsal root ganglion cells projecting in a muscle nerve contain neuropeptides such as substance P, calcitonin gene-related peptide (CGRP), and somatostatin.

Effective Stimuli for Peripheral Muscle Nociceptors

- Effective stimulants are adenosine triphosphate (ATP) and protons (low pH). These substances excite muscle nociceptors at (patho)physiological concentrations.
- Receptor molecules are P2X2–5 for ATP and ASIC3/TRPV1 for protons. Most muscle nociceptors are
 polymodal and respond to both noxious pressure stimulation and pain-producing substances.
- In lesioned muscle, nociceptors lower their mechanical threshold and respond to weak stimuli. This change in threshold may be the basis of muscle tenderness.
- Repeated intramuscular injections of acidic solutions induce generalized muscle pain.
- The density of innervation with free nerve endings increases in inflamed muscle.

Central Effects of Nociceptive Activity from Muscle

- Nociceptive input from muscle is more effective in inducing central neuroplastic changes than is input from the skin.
- Every long-lasting input from muscle nociceptors to the CNS increases the excitability of central neurons, leading to pain, hyperalgesia, and pain referral. The referral is probably due to the opening of silent synapses.
- The postsynaptic receptor molecules responsible for central sensitization include *N*-methyl D-aspartate (NMDA) and neurokinin-1 receptors.
- Even subthreshold synaptic activity sensitizes dorsal horn neurons. This mechanism may be essential for some cases of occupational muscle pain.
- Glial cells, microglia in particular, are activated by a muscle lesion and release sensitizing factors such as ATP, prostaglandins, and brain-derived neurotrophic factor.

References

- 1. Chacur M, Lambertz D, Hoheisel U, Mense S. Role of spinal microglia in myositis-induced central sensitisation: an immunohistochemical and behavioural study in rats. Eur J Pain 2008; Epub Dec 16.
- 2. Graven-Nielsen T, Mense S, Arendt-Nielsen L. Painful and non-painful pressure sensations from human skeletal muscle. Exp Brain Res 2004;59:273–8.
- 3. Hoheisel U, Reinöhl J, Unger T, Mense S. Acidic pH and capsaicin activate mechanosensitive group IV muscle receptors in the rat. Pain 2004;110:149–57.
- 4. Hoheisel U, Unger T, Mense S. Sensitization of rat dorsal horn neurones by NGF-induced subthreshold potentials and low-frequency activation. A study employing intracellular recordings in vivo. Brain Res 2007;1169:34–43.
- 5. Kumazawa T, Mizumura K. Thin-fibre receptors responding to mechanical, chemical and thermal stimulation in the skeletal muscle of the dog. J Physiol 1977;273, 179–94.
- Light AR, Hughen RW, Zhang J, Rainier J, Liu Z, Lee J. Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X, and TRPV1. J Neurophysiol 2008;100:1184–1201.
- 7. Mense S, Meyer H. Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol 1985;363:403–17.
- 8. Sluka KA, Kalra A, Moore SA. Unilateral intramuscular injections of acidic saline produce a bilateral long-lasting hyperalgesia. Muscle Nerve 2001;24:37–46.

