Page 38 Volume 20 - N3 - 2012
P. 38
M.S. Afonso, F.L. Moreira Neto: As Células Gliais da Medula Espinhal e a Dor Neuropática: Implicações no Uso de Opióides
23. Averill S, Michael GJ, Shortland PJ, et al. NGF and GDNF ameliorate 47. Tsuda M, Shigemoto-Mogami Y, Koizumi S, et al. P2X4 receptors
the increase in ATF3 expression which occurs in dorsal root gan- induced in spinal microglia gate tactile allodynia after nerve injury.
glion cells in response to peripheral nerve injury. Eur J Neurosci. Nature. 2003;424(6950):778-83.
2004;19(6):1437-45. 48. Tsuda M, Toyomitsu E, Komatsu T, et al. Fibronectin/integrin system
24. Zhou XF, Deng YS, Xian CJ, Zhong JH. Neurotrophins from dorsal is involved in P2X(4) receptor upregulation in the spinal cord and
root ganglia trigger allodynia after spinal nerve injury in rats. Eur J neuropathic pain after nerve injury. Glia. 2008;56(5):579-85.
Neurosci. 2000;12(1):100-5. 49. Trang T, Beggs S, Salter MW. Purinoceptors in microglia and neuro-
25. Myers RR, Heckman HM, Rodriguez M. Reduced hyperalgesia in pathic pain. Pflugers Arch. 2006;452(5):645-52.
nerve-injured WLD mice: relationship to nerve fiber phagocytosis, 50. Chessell IP, Hatcher JP, Bountra C, et al. Disruption of the P2X7 © Permanyer Portugal 2012
axonal degeneration, and regeneration in normal mice. Exp Neurol. purinoceptor gene abolishes chronic inflammatory and neuropathic
1996;141(1):94-101. pain. Pain. 2005;114(3):386-96.
26. Murphy PG, Ramer MS, Borthwick L, Gauldie J, Richardson PM, 51. Honore P, Donnelly-Roberts D, Namovic MT, et al. A-740003
Bisby MA. Endogenous interleukin-6 contributes to hypersensitiv- [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethyl
ity to cutaneous stimuli and changes in neuropeptides associated propyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective
with chronic nerve constriction in mice. Eur J Neurosci. 1999;11(7): P2X7 receptor antagonist, dose-dependently reduces neuropathic
2243-53. pain in the rat. J Pharmacol Exp Ther. 2006;319(3):1376-85.
27. Ramer MS, Murphy PG, Richardson PM, Bisby MA. Spinal nerve 52. Kobayashi K, Yamanaka H, Fukuoka T, Dai Y, Obata K, Noguchi K.
lesion-induced mechanoallodynia and adrenergic sprouting in sen- P2Y12 receptor upregulation in activated microglia is a gateway of
sory ganglia are attenuated in interleukin-6 knockout mice. Pain. p38 signaling and neuropathic pain. J Neurosci. 2008;28(11):
1998;78(2):115-21. 2892-902.
28. Miller RJ, Jung H, Bhangoo SK, White FA. Cytokine and chemokine 53. Tozaki-Saitoh H, Tsuda M, Miyata H, Ueda K, Kohsaka S, Inoue
regulation of sensory neuron function. Handb Exp Pharmacol. K. P2Y12 receptors in spinal microglia are required for neuro-
2009;194:417-49. pathic pain after peripheral nerve injury. J Neurosci. 2008;28(19):
29. Popovich PG, Wei P, Stokes BT. Cellular inflammatory response after 4949-56.
spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neu- 54. Coull JA, Beggs S, Boudreau D, et al. BDNF from microglia causes
rol. 1997;377(3):443-64. the shift in neuronal anion gradient underlying neuropathic pain.
30. Hashizume H, DeLeo JA, Colburn RW, Weinstein JN. Spinal glial Nature. 2005;438(7070):1017-21.
activation and cytokine expression after lumbar root injury in the rat. 55. Inoue K, Koizumi S, Tsuda M. The role of nucleotides in the neu-
Spine (Phila Pa 1976). 2000;25(10):1206-17. ron--glia communication responsible for the brain functions. J Neu-
31. Sweitzer SM, Colburn RW, Rutkowski M, DeLeo JA. Acute periph- rochem. 2007;102(5):1447-58.
eral inflammation induces moderate glial activation and spinal 56. Hutchinson MR, Zhang Y, Brown K, et al. Non-stereoselective
IL-1beta expression that correlates with pain behavior in the rat. reversal of neuropathic pain by naloxone and naltrexone: in-
Brain Res. 1999;829(1-2):209-21. volvement of toll-like receptor 4 (TLR4). Eur J Neurosci.
32. Tan AM, Zhao P, Waxman SG, Hains BC. Early microglial inhibi- 2008;28(1):20-9.
tion preemptively mitigates chronic pain development after ex- 57. Hutchinson MR, Zhang Y, Shridhar M, et al. Evidence that opioids
perimental spinal cord injury. J Rehabil Res Dev. 2009;46(1): may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun.
123-33. 2010;24(1):83-95.
33. Marchand F, Tsantoulas C, Singh D, et al. Effects of Etanercept and 58. Hansson E. Could chronic pain and spread of pain sensation be
Minocycline in a rat model of spinal cord injury. Eur J Pain. induced and maintained by glial activation? Acta Physiol (Oxf).
2009;13(7):673-81. 2006;187(1-2):321-7.
34. Watkins LR, Milligan ED, Maier SF. Glial proinflammatory cytokines 59. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a
mediate exaggerated pain states: implications for clinical pain. Adv family of protein kinases with diverse biological functions. Microbiol
Exp Med Biol. 2003;521:1-21. Mol Biol Rev. 2004;68(2):320-44.
35. Ling EA, Kaur LC, Yick TY, Wong WC. Immunocytochemical localiza- 60. Schieven GL. The p38alpha kinase plays a central role in inflamma-
tion of CR3 complement receptors with OX-42 in amoeboid microg- tion. Curr Top Med Chem. 2009;9(11):1038-48.
lia in postnatal rats. Anat Embryol (Berl). 1990;182(5):481-6. 61. Ji RR, Gereau RW, Malcangio M, Strichartz GR. MAP kinase and
36. Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S. pain. Brain Res Rev. 2009;60(1):135-48.
Expression of CCR2 in both resident and bone marrow-derived mi- 62. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta
croglia plays a critical role in neuropathic pain. J Neurosci. Neuropathol. 2010;119(1):7-35. Sem o consentimento prévio por escrito do editor, não se pode reproduzir nem fotocopiar nenhuma parte desta publicação.
2007;27(45):12396-406. 63. Adler MW, Geller EB, Chen X, Rogers TJ. Viewing chemokines as a
37. Thacker MA, Clark AK, Bishop T, et al. CCL2 is a key mediator of third major system of communication in the brain. AAPS J.
microglia activation in neuropathic pain states. Eur J Pain. 2005;7(4):E865-70.
2009;13(3):263-72. 64. Zhang N, Rogers TJ, Caterina M, Oppenheim JJ. Proinflammatory
38. Dansereau MA, Gosselin RD, Pohl M, et al. Spinal CCL2 pronocicep- chemokines, such as C-C chemokine ligand 3, desensitize mu-opi-
tive action is no longer effective in CCR2 receptor antagonist-treated oid receptors on dorsal root ganglia neurons. J Immunol.
rats. J Neurochem. 2008;106(2):757-69. 2004;173(1):594-9.
39. Lindia JA, McGowan E, Jochnowitz N, Abbadie C. Induction of 65. Mayer DJ, Mao J, Holt J, Price DD. Cellular mechanisms of neuro-
CX3CL1 expression in astrocytes and CX3CR1 in microglia in the pathic pain, morphine tolerance, and their interactions. Proc Natl
spinal cord of a rat model of neuropathic pain. J Pain. Acad Sci USA. 1999;96(14):7731-6.
2005;6(7):434-8. 66. Song P, Zhao ZQ. The involvement of glial cells in the development
40. Zhuang ZY, Kawasaki Y, Tan PH, Wen YR, Huang J, Ji RR. Role of of morphine tolerance. Neurosci Res. 2001;39(3):281-6.
the CX3CR1/p38 MAPK pathway in spinal microglia for the develop- 67. Cui Y, Chen Y, Zhi JL, Guo RX, Feng JQ, Chen PX. Activation of
ment of neuropathic pain following nerve injury-induced cleavage of p38 mitogen-activated protein kinase in spinal microglia mediates
fractalkine. Brain Behav Immun. 2007;21(5):642-51. morphine antinociceptive tolerance. Brain Res. 2006;1069(1):
41. Milligan ED, Zapata V, Chacur M, et al. Evidence that exogenous 235-43.
and endogenous fractalkine can induce spinal nociceptive facilita- 68. Raghavendra V, Rutkowski MD, DeLeo JA. The role of spinal neuro-
tion in rats. Eur J Neurosci. 2004;20(9):2294-302. immune activation in morphine tolerance/hyperalgesia in neuropath-
42. Clark AK, Yip PK, Grist J, et al. Inhibition of spinal microglial cathep- ic and sham-operated rats. J Neurosci. 2002;22(22):9980-9.
sin S for the reversal of neuropathic pain. Proc Natl Acad Sci USA. 69. Tai YH, Wang YH, Wang JJ, Tao PL, Tung CS, Wong CS. Amitriptyline
2007;104(25):10655-60. suppresses neuroinflammation and up-regulates glutamate trans-
43. Biber K, Dijkstra I, Trebst C, De Groot CJ, Ransohoff RM, Boddeke porters in morphine-tolerant rats. Pain. 2006;124(1-2):77-86.
HW. Functional expression of CXCR3 in cultured mouse and human 70. Raghavendra V, Tanga FY, DeLeo JA. Attenuation of morphine toler-
astrocytes and microglia. Neuroscience. 2002;112(3):487-97. ance, withdrawal-induced hyperalgesia, and associated spinal in-
44. Rappert A, Biber K, Nolte C, et al. Secondary lymphoid tissue che- flammatory immune responses by propentofylline in rats. Neuropsy-
mokine (CCL21) activates CXCR3 to trigger a Cl- current and che- chopharmacology. 2004;29(2):327-34.
motaxis in murine microglia. J Immunol. 2002;168(7):3221-6. 71. Johnston IN, Milligan ED, Wieseler-Frank J, et al. A role for proinflam-
45. Suter MR, Wen YR, Decosterd I, Ji RR. Do glial cells control pain? matory cytokines and fractalkine in analgesia, tolerance, and sub-
Neuron Glia Biol. 2007;3(3):255-68. sequent pain facilitation induced by chronic intrathecal morphine. J
46. Nasu-Tada K, Koizumi S, Tsuda M, Kunifusa E, Inoue K. Possible Neurosci. 2004;24(33):7353-65.
involvement of increase in spinal fibronectin following peripheral 72. Shavit Y, Wolf G, Goshen I, Livshits D, Yirmiya R. Interleukin-1 an- DOR
nerve injury in upregulation of microglial P2X4, a key molecule for tagonizes morphine analgesia and underlies morphine tolerance.
mechanical allodynia. Glia. 2006;53(7):769-75. Pain. 2005;115(1-2):50-9. 37